Abstract: With recent advances in high-resolution satellite imagery and machine vision algorithms, fine-grain geospatial data on population are now widely available: kilometer-by-kilometer, worldwide. In this paper, we showcase how researchers and policymakers in developing countries can leverage these novel data to precisely identify “education deserts” - localized areas where families lack physical access to education - at unprecedented scale, detail, and cost-effectiveness. We demonstrate how these analyses could valuably inform educational access initiatives like school construction and transportation investments, and outline a variety of analytic extensions to gain deeper insight into the state of school access across a given country. We conduct a proof-of-concept analysis in the context of Guatemala, which has historically struggled with educational access, as a demonstration of the utility, viability, and flexibility of our proposed approach. We find that the vast majority of Guatemalan population lives within 3 km of a public primary school, indicating a generally low incidence of distance as a barrier to education in that context. However, we still identify concentrated pockets of population for whom the distance to school remains prohibitive, revealing important geographic variation within the strong country-wide average. Finally, we show how even a small number of optimally-placed schools in these areas, using a simple algorithm we develop, could substantially reduce the incidence of “education deserts” in this context. We make our entire codebase available to the public – fully free, open-source, heavily documented, and designed for broad use – allowing analysts across contexts to easily replicate our proposed analyses for other countries, educational levels, and public goods more generally.

Keywords: access to education, education deserts, school placement, education in developing countries

Acknowledgements: We are grateful for the support and feedback from Benjamin Castleman, Daphna Bassok, James Wyckoff, Erich Purpur, and our colleagues in the Center on Education Policy and Workforce Competitiveness (EdPolicyWorks) and the Nudge4 Solutions Lab. This work has been supported by the Institute of Education Sciences, grant #R305B140026, through the Virginia Education Science Training Pre-Doctoral Fellowship program.
1. Introduction

Developing countries have recently made significant strides in improving fundamental educational outcomes like literacy rates and primary school enrollment. For instance, net enrollment in primary school worldwide went from 72% in 1970 to 89% in 2018, thanks to widespread efforts and strategic investments from governments and international agencies (World Bank Development, 2017). These encouraging advances have motivated a corresponding change in the policy priorities of development organizations and policy institutions from getting students into school, to improving the learning outcomes of students while attending school (World Bank, 2017). However, despite this meaningful progress in terms of enrollment, much of the developing world is still far from achieving universal education. For instance, 1 of every 6 age-appropriate children for primary and secondary school in low-income countries remained out of school by 2018 – a total of 258 million children around the world (UNESCO, 2019).

While the particular reasons students remain unenrolled in school varies by context and individual, available evidence shows that actually having a school physically nearby is the first-order necessity for attending school and improving human capital. As Evans and Mendez-Acosta put it, “ultimately, construction is likely a necessary condition for other interventions to work when there are insufficient schools.” (Evans and Mendez-Acosta, 2020). As such, ensuring that the full population of a region has reasonable physical access to a school is a critical first step in this pursuit of universal school enrollment. Adequately addressing this need requires that policymakers and researchers identify highly localized areas in which populations lack physical access to school.

Yet to date, fine-grain analyses of this kind for developing countries have been logistically and financially prohibitive due to the costs of conducting local surveys and standing up the extensive analytic infrastructure required.

In this paper, we develop an open-source analytic framework to precisely identify areas of low physical access to schools (i.e., “education deserts”, per Hillman, 2016) using recently available estimates of the distribution of population across nearly every square kilometer on the planet (WorldPop, 2018). By cross-referencing these publicly-accessible data with administrative records on school locations within a given country – data that are also broadly available and accessible to the public across many contexts – we can empirically quantify the extent to which distance to school is a problem within a given country, and further identify the exact areas, if any, where people do not have access to schools nearby. Prior analyses of educational access, particularly in developing countries, were typically limited to characterizing broad regional tracts, such as counties or departments (e.g., Lehman et al., 2013), or local areas with extensive data collection resources, such as larger urban centers. By comparison, our framework can identify education deserts across nearly every country in the world down to the 1 km² level – a resolution substantially more amenable to targeted policy interventions like school construction when paired with the contextual expertise of local policymakers. To provide a demonstration of this analytic framework in the present paper, we exemplify our approach in the Guatemalan context, a country which has historically struggled with educational access and equity.
Ultimately, our analytic framework offers a multitude of actionable insights for policymakers and researchers. First, it allows us to estimate how far individuals in every square kilometer of a country must travel to reach a school – analyzable separately by primary/secondary/postsecondary schools, public/private, or other categories of interest. We further visualize these results using a variety of figures and maps to make the wealth of output easily parsed by policymakers. Second, we can re-contextualize these results by setting a baseline “threshold” of what should constitute reasonable physical access to school and thus identify education deserts. For example, if policymakers wish to ensure that every child lives within three kilometers of a school (a commonly used international benchmark), our framework can quickly identify what proportion of the population lacks this access, and precisely where those populations are located. Such insights allow for a more nuanced understanding of regional-level enrollment rates and potential barriers to greater enrollment, as well as changes in physical access over time. Third, using this same threshold definition for an education desert, our framework can algorithmically identify school construction sites that would most reduce the share of population living in an education desert and thus maximize the efficiency of school construction as a lever for improving educational access. To illustrate the potential value of this algorithmic optimization, we conduct a simulation analysis in Guatemala and find that building a mere 350 optimally-placed schools based on the algorithm’s recommendations from 2008 data would have had the same impact on the share of population living in a public primary school desert as the 7000 schools that were actually opened in the ensuing decade. Finally, we provide guidance for analysts who wish to further refine these analyses to account for geographic factors like elevation, impassable terrain, and similar considerations.

Most importantly, we deliver all of these analytic components in an extensively documented open-source codebase alongside this manuscript designed around the goal of “plug-and-play” utility; assuming an analyst can obtain, at minimum, school location data for a given country context, the entirety of our main analysis can be replicated with minimal effort, zero cost (all requisite software and packages used in our analysis are also free and open-source), and only modest computational resources. This code base is publicly available at: https://github.com/brhkim/mapping-education-deserts, from which the code can be downloaded, and adapted by other analysts. Indeed, while we focus on Guatemala for the body of this manuscript, we include in the appendix parallel analyses for Peru, Costa Rica, Tanzania, Kenya, Rwanda, and South Africa, as a testament to the portable nature of our analysis. Aligning our codebase to analyze each additional country takes as little as ten minutes (excluding time for the computation itself). And while our analysis is geared towards assessing the accessibility of schools, our codebase requires only clerical adjustments to instead analyze the physical accessibility of any other statically-located public good (e.g., vaccination sites, water sources, libraries, hospitals, etc.).

1 We were able to replicate our analysis on a single consumer-grade laptop, which took approximately one hour to complete our main analytic components. Analytic extensions will take substantially longer depending on country size but should impose no additional hardware constraints.
While our findings ultimately show that physical access to public primary schools is not a prominent barrier to universal school enrollment in Guatemala, we observe meaningful variation in the extent to which this is true across the country. Moreover, this analysis then offers empirical evidence to suggest that low regional enrollment rates in Guatemala are more likely the result of barriers besides physical access – insights that could prove invaluable for policymakers moving forward. In sum, we argue that as policymakers seek to traverse the last mile in school access and enrollment, fine-grain geolocated data infrastructure and identification algorithms like the one we propose here can offer enormous utility by ensuring that school investments are made in areas where they would have the highest returns in terms of educational access.

The rest of the paper is structured as follows. Section 2 describes the background and conceptual framework for this paper. Section 3 describes the data sources and Guatemalan context we focus on to demonstrate our analysis. Section 4 describes our main methodology, Section 5 reviews our main results for Guatemala, and Section 6 describes how the main methodology can be expanded and adapted to produce additional analytic insights. Finally, Section 7 explores the implications and possible applications of this analysis.

2. Background

2.1. School proximity and educational outcomes

Previous research is clear in highlighting the educational benefits of policies that target school construction in areas which are underserved by educational institutions. In a meta-analysis of the effect of physical inputs on educational outcomes from 1990-2010, Glewwe et al. (2013) find that there are five high-quality studies on building new schools in developing countries, which all find consistently positive effects on enrollment and the time the students spend in school. More recently, Evans and Mendez-Acosta (2020) review 6 new studies on school construction in Africa since 2014, finding general increases in enrollment and learning across contexts, and highlighting that these programs seemed most effective when physical access to schools was indeed the binding constraint to school enrollment (e.g., in rural areas with few or no schools nearby). Similarly, in experimental work in Afghanistan, Burde and Linden (2013) find that the construction of community schools that decreased students’ physical distance to school increased enrollment by 47 p.p., raised test scores by 0.59 standard deviations, and helped girls more than boys, nearly eliminating the gender gap in enrollment. Duflo (2001) also shows that school construction in places in Indonesia where there were no or few schools led to returns to education of 6.8 to 10.6 percent in Indonesia, and Koppensteiner and Matheson (2019) demonstrate that secondary school construction in Brazilian regions previously without schools led to a substantial decrease in teen pregnancy.

Not only is there evidence for the benefits of school construction on educational outcomes, but parents themselves seem to also favor school proximity. For instance, Solomon and Zeitlin (2019) run a discrete-choice experiment with Tanzanian parents, in which they find that parents indeed value outcomes (i.e., school test scores) and school proximity more than other inputs such as pupil-teacher ratios and desk availability. They find that the average travel distance to school in
Tanzania is about 5 km, but that parents are willing to trade off more positive reported outcomes for proximity. For instance, parents are willing to send their children an additional 1.16 km for a school that scores about 8% higher over the mean on average on a primary exit exam. In all, targeted school construction in areas where there are few or no schools seems to be, perhaps expectedly, a powerful way to improve school enrollment, as well as other important indicators along the lines of learning, gender parity, and equality of opportunities more broadly.

2.2. School proximity as one barrier to access of many

In spite of the strong evidence in favor of building schools in remote areas with low physical access to schools, little is known about how researchers and policymakers can best understand the extent to which distance, specifically, may be a barrier to enrollment for certain sub-populations and geographic areas on a comprehensive scale. For example, while local school enrollment rates are often referenced as a primary metric of school accessibility, these measures could be driven by a variety of context-specific issues ranging from family finance, motivation, cultural priorities, as well as physical access – each of which require drastically different policy interventions in circumstances where resources for such interventions are scarce. Relying on enrollment rates to guide intervention in this manner then masks to a large degree the potential heterogeneity in physical access to schools by region, locality, or settlement pattern. In order to maximize the effectiveness and impact of any investments made in educational access across developing nations, policymakers would ideally be able to differentiate between the previously described scenarios using a data-driven, empirical approach.

As an illustration of this quandary, the World Bank reported in 2016 that 82% of all age-appropriate children in Kenya were enrolled in primary schools (World Bank Development Indicators, 2016). It is nevertheless unclear what the barriers to access look like for the remaining 18%. One can imagine a scenario where these students would attend school if one were available, but currently lack access; conversely, it could be that they currently have physical access, but choose not to enroll for other reasons like fees or high opportunity costs. Both stories would be consistent with the overall aggregate statistic, but they would require drastically different policy recommendations. In the case of the first scenario, policymakers might consider policies like investment in school construction and infrastructure, whereas investment in outreach campaigns or scholarships could likely be a higher priority in the second scenario. In short, without more fine-grain data than aggregate enrollment statistics, it is infeasible to systematically assess the varying educational needs in terms of increasing access to and enrollment in school.

In order to conceptualize the policy issue described here, we borrow the term “education deserts” in the spirit of Hillman (2016). Hillman’s study identifies commuting zones in the United States that do not have reasonable access to higher education - defined as living more than one hour by car from the nearest institution. While we focus on primary education in developing countries in the present analysis, the core of Hillman’s analysis is the same as ours: the systematic identification of areas without physical access to education given a particular definition for reasonable distances to travel. More broadly, the international education literature refers to this
type of rule regarding optimal school construction and placement as a “norm” (Theunynck, 2009; Lehman et al., 2013), and categorizes distance under the norm of “accessibility and efficiency.” Previous policy and research efforts to establish these accessibility and efficiency norms have generally focused on selecting a maximum acceptable distance that children would be expected to travel to school, thus defining the “catchment area” for schools. For example, a commonly applied distance norm is to locate schools within a radius of 3 km from students’ homes, though these numbers are often context-specific and can be sensitive to factors like mountainous areas where the effort of traveling such distances can vary greatly (Theunynck, 2009). Another example is Lehman et al. (2013), who report that in rural Mali, the distance norm in 2004 was set at 5 km.3

While these norms have been pervasive in the theory underpinning school construction, it has long been difficult to actually implement them at scale into decision-making frameworks given the costly and time-consuming nature of collecting such data for any given locality. For instance, Lehman et al. (2013) set out to do this in Mali, across 12 of the country’s 70 educational administration districts. Ultimately, only 8 of these 12 intended districts were successfully georeferenced by surveyors, identifying all the schools, villages, and hamlets within them. While the Lehman et al. (2013) report is an extensive and valuable effort to quantify physical access to schools, the dependence on in-person surveying of schools, villages, and population makes the marginal costs of including new areas using this methodology prohibitively high for many. This is true in terms of financial costs, as well as logistical difficulty for areas that may be too remote or afflicted by conflict.

3. Data and Context

Our main methodology, by contrast, requires only two critical data components: the locations of schools across a country (through pairs of latitude and longitude coordinates), and the geographic distribution of population across a country. For the methodological extensions that we articulate in this paper, we further incorporate data on elevation geography to examine the repercussions of alternate “pathing” algorithms to school, a second wave of historical schools and population data to examine trends over time, and regional enrollment rates to facilitate comparisons across traditional and geographic measures of access.

School location data is perhaps the least standardized across contexts of our data requirements in terms of how countries report it, and stands as the primary barrier to replicating our analysis broadly. Still, this information is commonly obtainable through administrative records in many countries, either as latitude-longitude coordinates, or as physical addresses that are easily translated into coordinates through “geocoding.” Recent grassroots efforts using commonly available modern technology have also shown that school locations can be “crowdsourced” in contexts where the government has not actively located where all the educational institutions are. For instance, Mulaku and Nyadimo (2013) describe the “Kenyan School Mapping Project,” where

2 Theunynck (2009) notes that this norm is in line with the recommendations of the International Institute for Education Planning (IIEP) in Paris and the World Bank (Gould, 1978).

3 If a reasonable estimate for the average walking speed for a 12-year-old is 5 km/hour (which is faster than for younger children), this would imply a two-hour, daily journey to school (Cavagna et al., 1983).
the researchers identified and geolocated over 70,000 institutions across the Kenyan territory. As is the case with any secondary data analyses, the exact process and scope of data collection for these administrative datasets will have meaningful repercussions for the robustness and interpretation of applications of our geospatial analysis. Therefore, researchers should be careful to interrogate these data accordingly before applying the algorithm we propose. For example, what are the formal conditions for a school to be included in the data? Are there relevant institutions likely to be excluded, such as private or parochial schools? And how might such details affect specific areas, contexts, or populations differentially?

For the purposes of this paper, we use government administrative data that focus exclusively on locating publicly-run primary schools in Guatemala in 2017 (Ministerio de Educación, 2020) and 2008 (SEGEPLAN, n.d.). We expect that other types of schooling in this context are important to consider when characterizing the broader landscape of education, but these publicly run schools as tracked by the government are likely the most policy-relevant sample to consider when analyzing, and intervening upon, the public’s broad access to educational services.

Our geolocated, fine-grain population data come from the “Global High-Resolution Population Denominators Project” datasets (WorldPop, 2018). These layers provide estimates of human population distribution at a resolution of approximately 100 or 1000 meters for all years between 2000-2020. The unusually fine-grain data comes from a combination of census and satellite data, as well as careful application of machine learning algorithms (Stevens et al., 2015), developed through a partnership between School of Geography and Environmental Science at University of Southampton; the Department of Geography and Geosciences, at the University of Louisville; the Departement de Geographie, Universite de Namur, and the Center for International Earth Science Information Network (CIESIN), Columbia University. Discussion of their exact methodology is outside the scope of this paper, but the end result is that these data are highly standardized and available for nearly every country in the world at time of writing. In other words, the need to obtain these fine-grain population data to implement our proposed methodology should not pose a constraint for nearly any application.

While our main methodology should be broadly applicable given these relatively modest data requirements, we focus the current paper on Guatemala to showcase our approach for two primary reasons. First, Guatemala is a country which has historically struggled with an array of social challenges, and educational outcomes in Guatemala are particularly weak. For example, in terms of net school enrollment, 86% of school-age children were enrolled in primary school as of 2017 (compared to 94% in Latin America in 2017), and down from 94% in 2008 (World Bank Development Indicators). In terms of learning, the World Bank estimates that 2 in 3 Guatemala children experience “learning poverty”, meaning that they are not proficient in reading, even by

4 The specific version of the data used for this analysis is known as the “Top-Down Unconstrained Individual Countries 2000-2020 (1 km² Resolution)” dataset. No changes to the algorithm would be required if the data used was the version with resolution at the 100 m resolution. However, this does increase computational time substantially. Analysts focusing on only one country context at a single point in time may opt to use the “Bottom-Up” datasets instead; we encourage all those interested to examine the trade-offs of these datasets closely before use.
the time they get to grade 6 (World Bank, 2019). These challenges are typically worsened by the large inequities along ethnic and geographic lines within Guatemala (McEwan, 2007), given a very diverse geographic landscape with mountain ranges, lakes, and volcanos throughout the southern regions, and deep tropical jungle in more northern areas. Taken together, these challenges in terms of educational inequalities and physical characteristics make Guatemala an appropriate case study to pilot our methodology.

The second reason why we chose Guatemala is because of the public availability of all the needed data sets required for our main analysis and extensions. While our main analysis requires only a single year’s worth of school and population data, additional data (such as multi-year school data) offer a useful opportunity to test the methodology’s robustness and to assess the extent to which it offers new insight versus traditional measures. As such, this paper is best served by selecting a context that facilitates these valuable comparisons, as these additional data requirements do impose meaningful constraints to the exclusion of many otherwise viable contexts. Finally, note that we further test the “portability” of our method by conducting our main analyses in the contexts of six other developing countries in Sub-Saharan Africa and Latin America for which we could easily find data. We include this analysis in the appendix, and remark on individual data sources there.

4. Main methodology

The goal of our framework is to systematically identify areas of low physical access to educational facilities in a scalable and reproducible way. Our main methodology consists of a conceptually-straightforward algorithm which estimates the nearest distance from each population pocket to a public primary school, and then analyzes these distances in different ways to compute interpretable statistics and output. Specifically, the method follows these basic steps:

1. Load the fine-grain population raster data from the “Global High-Resolution Population Denominators Project,” publicly available for all countries, discretized at either the 100x100m or 1x1 km plot level. Each discrete geographic unit will be treated as the basic unit of analysis, and each such observation contains an estimate of the number of people that live inside this unit.
2. Load the school location data describing the latitude and longitude of each school.
3. Estimate the straight-line distance (“as the crow flies”) between the center of each population unit and its nearest public school.

The output we obtain is a geolocated set of land plots with two key attributes: a) the estimated population living in each plot area, and b) the minimum distance from that plot to a public primary school. From this dataset, we can create several outputs to understand where the areas of low physical access, or “education deserts,” are. Since these high-resolution population grids are much more disaggregated than even localized aggregate statistics on school access, we can pinpoint the specific areas where the distance to schools is prohibitively far.

Our approach has three key advantages. First, it is very straightforward to implement and to understand conceptually, facilitating its broad use and easy interpretation by analysts and
policymakers. Second, and relatedly, this analysis requires nothing more than a consumer-grade laptop and access to the internet, as all software involved (at least in the implementation we provide alongside this paper) are free and open-source. Third, the data it requires are readily available for many contexts. The fine-grain population data we use is available for virtually all countries in the world, at a resolution of 100 m2, or 1 km2 for faster computation. There are moreover other sources that take a different approach to estimating population data for which our algorithm is also compatible.\footnote{For example, the High-Resolution Settlement Layer (HRSL) datasets, which are the product of a long-term collaboration between Columbia University and the Facebook Connectivity Lab (CIESIN, 2016). Their approach combines intensive survey work with advanced machine learning to estimate the population of every 30 x 30m block in a country, for almost every country worldwide. The disadvantage of this, admittedly more disaggregated dataset, is that the current data for most countries is for 2015, meaning that if the school data does not match this year, there might be some mismatch in the analysis.} As mentioned earlier, many governments already maintain administrative databases tracking the location of schools (such as the “EMIS” systems), which are often publicly available, either by default or on request.

The simplicity of our proposed methodology is an intentional decision to offer greater flexibility, allowing it to be adapted and responsive to specific contexts as necessary, but it also makes three important methodological choices that should be stated explicitly. First, the choice of population pockets at the 1 km2 resolution clearly defines how granular and precise our analysis is. Although the population data that we use is also available at the level of 100 m2 resolution, we observe similar results when this population layer is used, but with the important drawback of a much higher computational time that could put the analysis beyond the computational capabilities of many users. Ultimately, this decision should be for the user of the algorithm to determine given their context-specific knowledge and the policy action being considered.

Second, and relatedly, we assume that population is dispersed evenly within each geographic unit of 1 km2 when we calculate distance from the center of each plot to each school. This is because if population is distributed evenly across a 1 km2 plot, their average distance to school will be equivalent to the distance from the center of that plot, which is what we seek to estimate. That said, this assumption is obviously untenable and may serve to cause some measurement error in our process, but is done so for conceptual and computational ease as before. Importantly, this issue becomes negligible when the resolution is sufficiently small (as with the 100 m2 resolution), and it is actually possible to use the finer-grain population data to “weigh” population within coarser-grain population data. Given what we observed when running our analysis at the 100 m2 resolution, this assumption is unlikely to be consequential except in very few cases.

Third, we choose to calculate distance using an “as-the-crow-flies” approach (i.e., a straight line connecting each population pocket to the nearest school). We recognize that this approach is most certainly an under-estimate as it may ignore geographic constraints such as swift elevation changes or lack of a clearly marked path or road. We discuss how to incorporate some of these features into our methodology in the extensions later. However, we decide to use to “as-the-crow-flies” as our baseline measure for several reasons. Much like in the discussion about resolution of...
the population data, computation time increases substantially by including these factors. Moreover, as we show in the extension later, we find that at least in the case of Guatemala, including elevation changes as a factor does not significantly change the results. Lastly, we believe that the inclusion of other constraints in the landscape should be context-dependent, as a mountainous country with a relatively low number of roads such as Bhutan may need different adjustments compared to a flat country composed of many islands such as the Maldives. As such, we default to the as-the-crow-flies approach and leave it to users to modify this base-level algorithm to their specific needs.

5. Main Results

We begin our proof-of-concept analysis by running our main algorithm using the Guatemalan population and primary schools data from 2017. Using the resulting data set, we create several outputs to better understand the nature of physical access to primary schools throughout the country. First, we examine the distribution of distances to school across the whole Guatemalan population. We display this distribution in Figure 1 (Panel A). The median Guatemalan person lives 0.8 km from a public primary school, and the person at the 95th percentile lives 2.9 km from the nearest school. For comparison, this is lower than the median distance of 2.2 km in Tanzania, the same as in Kenya, and higher than the median distance of 0.5 km in Costa Rica (see the appendix for more details and contexts). This continuous measure can be dichotomized into the share of the population that lives further than a specific distance away from a school, and those that do not, to define the population living in an “education desert.” This threshold distance for living in an education desert, effectively a distance norm, can be varied to explore the sensitivity of the dichotomous measure to different definitions/norms. We show this in Figure 1 (Panel B), where we calculate the proportion of Guatemalan population living in an education desert on the y-axis, at varying distance thresholds along the x-axis. For example, at a distance threshold of 1 km, 64% of the population lives in a primary school desert. Conversely, at a distance threshold of 5 km, only 1% lives in a primary school desert. For the most commonly used international distance norm of 3 km, only 5% of the population lives in a public primary school desert. Broadly speaking, Figure 1 suggests that prohibitive physical distances to school in Guatemala only affect a small share of the population, and that a relatively small but targeted school construction initiative might be effective at closing these access gaps.

Beyond quantifying the distribution of physical access to schools as an aggregated metric, our algorithm can also map out these distances to the nearest school for every square kilometer in the country. This type of figure serves as a visual primer on areas with greater and lesser physical access to school across the country, providing valuable insight on geographic heterogeneity in the aggregated measures we described above. In our map of Guatemala in Figure 2, we see that areas of low physical access (i.e., long distances to school) are concentrated mostly in the northern region (Petén region), and in the southwestern region (around the Escuintla and Santa Rosa departments). We argue that such visualizations allow for far more contextual interpretation of these distance-to-school measures.
Figure 1 (Panel A): Distribution of distance to nearest school across Guatemalan population

Figure 1 (Panel B): Proportion of Guatemalan population living in education desert at varying distance norms

Note: Sample subsets to only public primary schools in 2017 in Guatemala.
The Last Mile in School Access

6. Extensions to the methodology

As mentioned earlier, the main algorithm we propose in the previous section is relatively straightforward by design to allow enough flexibility in its adaptation across contexts and educational levels. In other words, it could be extended in several ways to yield a more nuanced and tailored analysis for different policy questions in other contexts. In this section, we demonstrate four ways in which our methodology could be modified or refined accordingly. The replication files for all four extensions are likewise publicly available in our included codebase.

6.1 Before and after comparisons

One of the simplest extensions that can be made in our framework is the analysis of physical access trends over time, a task we facilitate in our codebase and demonstrate here. In the Guatemalan context, we were able to obtain paired schools and population data for 2008 and 2017, allowing us to compare how physical access in the country has changed over the course of about a decade. Our data shows that between 2008 and 2017, the net number of public primary schools in Guatemala increased by 2,077, or approximately 15%. However, the Guatemalan population between the same period grew from 13.7 to 16.1 million people (18%). Therefore, at its face, the effect of the increase in the number of schools is ambiguous in terms of changes to the aggregate level of physical access to schools. Our methodology can be used to compare two points in time, as we show in Figure 3 below. Figure 3 shows that even though population growth outpaced school construction, the distribution of peoples’ distance to their nearest school shifted leftward, i.e., that

Figure 2: Heatmap of distance to nearest public primary school by population pocket

Note: Primary school and population data from 2017. Distance is measured as-the-crow-flies from the center of each population plot to the nearest primary school.
physical access to school improved over time. This fact should not be taken as an evaluation of school placement policy in that period, given that it is also highly susceptible to heterogenous local population changes. Instead, this approach simply provides a guide on how physical access changed over time in aggregate using exceptionally fine-grain data.

![Figure 3: Comparison of the distributions of distance to nearest school across Guatemalan population in 2008 and 2017](image)

Note: Analysis limited to public primary schools in Guatemala for the years shown.

6.2 Choosing a distance norm

Policymakers have typically relied on fixed distance norms or thresholds to determine whether a certain population pocket is within a school’s catchment area (Theunynck, 2009; Lehman et al., 2013). This threshold is highly context-dependent, and should be chosen, if at all, by agents with rich knowledge of the specific geographical, social, and budgetary landscape. As such, our main algorithm does not take an ex-ante stance on what this threshold should be, or what constitutes an “education desert.” However, the algorithm can be easily modified to accommodate a given distance norm for more in-depth analysis. This dichotomization has two main advantages. First, it most closely resembles the previous work on identifying areas as “education deserts,” with the added advantage that this task can now be done at scale in many contexts with minimal data and no surveying costs using our algorithmic approach. Second, it allows for quick identification of the most problematic areas given a certain threshold, offering a clear and interpretable “target”

6 This stands in contrast, for example, with Hillman (2016), where education deserts are defined by clear threshold (i.e., “60 minutes away by car”) to translate the analysis into a binary categorization of whether a place has access to higher education or not.
for policy intervention. For example, policymakers and their constituents may find it meaningful to ensure that all students in a given context live no further than X km from school.⁷

To showcase this extension to our main methodology, we choose a tentative distance threshold of 3 km in the Guatemalan context. Besides this being a common international distance norm, we estimate that just the cost of gas to cover even 3 km to school every day back and forth would lead to an expenditure of 4.4% (USD 7.4) of the average individual income per month in rural Guatemala, not taking into account school fees, books, bike maintenance, or other materials.⁸ If instead students take the bus, the monthly transportation cost could be USD 5.2 or 3% of the monthly rural income.⁹ These household expenses can start to look prohibitively high, especially for disadvantaged populations, further supporting the use of 3 km as a distance norm. This choice mirrors the spirit of Hillman (2016), where the author focuses on the distribution of postsecondary institutions across commuting zones in the United States as a proxy for access within a reasonable driving distance.

Figure 4 below shows the resulting geolocated “education deserts,” as defined by a distance norm of 3 km. The first panel pinpoints these areas on the map of Guatemala using color to represent the density of population in each of these areas (white representing areas not in an education desert), while the second panel uses the additional dimension of height to more clearly display the relative populations of these deserts. These two panels taken together highlight an important distinction: while most of the land that constitutes “education deserts” is located in the northern regions (Panel A), the real concentration of the population in education deserts is localized in the southern regions (Panel B). These figures, much like Figure 2, can provide an important perspective for policymakers to decide where to strategically locate schools to increase physical access to education.

⁷ For example, the Virginia Community College System advertises that, “If you are in Virginia, you are 30 miles from a community college” (Rorem, 2015).
⁸ Assuming an efficiency of 45 km per gallon, an average cost of 2.75 USD per gallon, and an average income in rural Guatemala of 168 USD per month (Voorend, et al., 2017).
⁹ Assuming a cost of 2 quetzales (0.13 USD) per ride (Cueva, 2020).
We can moreover examine the geographic distribution of population in a 3 km education desert and compare these insights against the information provided in traditional regional enrollment rates (defined in this case as the percent of age-appropriate students enrolled in primary school). Figure 5 (Panel A) displays the same information as Figure 4 (Panel A) except with regional enrollment rates underlaid in blue. What we observe immediately is that while some regions have high regional enrollment rates, they nonetheless contain several areas, of non-trivial population size, in education deserts. For example, the southern department of Escuintla (annotated with a red “A” beneath it) has a fairly high enrollment rate relative to other departments, yet still
has many pockets of education deserts. Conversely, Totonicapán (annotated with a red “B” on top of it) has some of the lowest enrollment rates in the country, yet has no incidence of education deserts by our measure. We examine this relationship more explicitly using the basic scatterplot in Figure 5 (Panel B). If enrollment rates were solely driven by whether people lived in an education desert, we would expect a perfectly negative relationship between regional enrollment rate and their share of population living in a 3 km education desert. Yet what we observe is only a weak relationship, if any. This indicates to us, at least on a conceptual level, that our measure of physical access is providing novel information compared with enrollment rates alone, and that the picture remains complex and multi-faceted even after analyzing physical access as we do here.

Figure 5 (Panel A): Geographic distribution of Guatemalan population at least 3 km away from a school against regional enrollment rates

Figure 5 (Panel B): Scatterplot of regional enrollment rates against percent of regional population living at least 3 km away from a school

Note: Sample focuses on only public primary schools in 2017 in Guatemala. Enrollment data were collected in 2016.
6.3 Prioritization of areas based on population

A natural extension of the identification of education deserts for a given distance norm is determining how to prioritize these areas given their relative population sizes. In other words, if policymakers were to invest in school construction, what construction locations would most reduce the share of population in an education desert? To do so, we propose an additional algorithm that extends our main methodology. After the main algorithm is applied, we use the previously discussed extension to identify the areas that fall outside of a given distance norm (i.e., the “education deserts”). Then, the new algorithm examines where a school could be constructed (within a 1 square kilometer area) to maximize new population reached given the distance norm.

It is able to do this iteratively for any set number of schools to be constructed (i.e., it can produce any number of optimally-placed schools, always taking into account any previously placed schools for the next school). This process can be reiterated until the desired number of schools is reached (e.g., as determined by some budget constraint), or a minimum target of population reached by schools is reached (e.g., “for a school to be built, it needs to have at least X population within its catchment area”). Therefore, this approach is especially helpful to policymakers under constraint conditions: if the budget constraint only allows the government to build a given number of schools, and the goal is to maximize the number of people reached, then this approach can ensure a more efficient placement of schools. Similarly, this approach could be helpful if governments have tiered proposals to address issues of physical access to education. In other words, a government might require a minimum number of people served for a school to be built, and locations that fall below this minimum might be prescribed other policies like remote instruction (such as “telesecundarias” in Mexico). In this case, this extension could help to quickly categorize localities at a large scale.

We test the efficiency of this algorithm at minimizing the share of population in a 3 km education desert by leveraging Guatemala data from 2008 and 2017 to conduct a simple simulation exercise: how different would the share of population in education deserts in 2017 look if Guatemala had used our algorithm in 2008 to determine new school placements instead of its business-as-usual procedure? To begin, we first conduct our main and distance norm analysis on Guatemala using population and primary school data from 2008, and a distance threshold of 3 km. Then, we run our school placement algorithm as described above given these data.

Once that analysis is complete, we determine how many schools Guatemala would have constructed in the time period between 2008 and 2017. Our dataset shows that Guatemala had a total of 14,033 public primary schools in 2008, but of these, only 9,040 remained open by 2017. Given that 16,110 schools were on record by 2017, we infer approximately 7,070 new schools were constructed by 2017.10 To be realistic, we assume that policymakers in this exercise would not have known which schools in 2008 were going to close over the next decade, nor how the distribution of population would change by 2017. In other words, they choose to construct and

10 Note that these numbers come from the presence of schools by their unique administrative ID in either data set (2008 or 2017). However, if schools simply had their unique IDs changed over this period (e.g., if they merged with another school, took on an additional level, etc.), we would still consider this as a school closing, and another one opening by this tallying method. That said, the precise number of new schools we estimate here is not hugely consequential, given the nature of the results we describe later.
place new schools based only on the “snapshot” of population in an education desert using 2008 data.

We find that if policymakers had placed all 7,070 new schools using our school placement algorithm and given these parameters, there would not be a single person living in an education desert by 2017; indeed, this feat would have been accomplished after constructing only 3,167 optimally-placed schools. That said, we recognize that there exist many other factors determining how new schools are placed, making this scenario fairly unrealistic. For example, Panel A of Figure 6 shows the cumulative new population reached per new school constructed, demonstrating the quickly diminishing returns to each additional optimally-placed school. This panel also highlights the important caveat that each additional new school would likely lack the requisite student body to justify new school construction well before this benchmark was reached (because building a school to serve a single person would not actually happen).

To explore a more realistic scenario, we proceed to ask the following question: given that the proportion of Guatemalan population in an education desert actually did decline from 2008 to 2017 after the 7,070 schools were constructed (see Section 6.1 above), how few optimally-placed schools would it take to produce this same reduction? Panel B of Figure 6 below displays the results of this thought experiment. The blue line shows the share of Guatemalan population in an education desert across varying distance thresholds, for the actual schools that existed in Guatemala in 2017 – essentially, our target to meet. The red line shows this same dynamic, but under the hypothetical circumstance that Guatemala had constructed no new schools at all between 2008 and 2017 – serving as our reference baseline. We find that it would take only 350 new optimally-placed schools to match the actual reduction of population living in a 3 km education desert by 2017, the hypothetical circumstance represented by the green line. Put another way: **350 optimally-placed schools had the same impact on the share of population in an education desert as the 7,070 schools actually built between 2008 and 2017.** We take this finding as especially hopeful and actionable for policymakers because it roughly indicates that – at least in the Guatemalan context – substantial strides in physical access can be made even if only one in 20 schools are constructed with physical access in mind. Conversely, it also makes clear that even a large amount of school construction may not necessarily increase physical access to school across the country by default (e.g., new schools are built in locations already being served by other schools). Policymakers are the best suited to determining when and to what extent physical access should be a consideration for new school construction, but so long as it remains even a minute priority, progress can be made with the help of these proposed algorithms.
Figure 6 (Panel A): New population reached per optimally located school

Note: For simulated public primary schools in 2017.

Figure 6 (Panel B): Comparison of the distribution of the Guatemalan population living in an education desert in 2017, across several real and simulated school construction scenarios

Note: Population data used are from 2017 regardless of school construction scenario.
6.4 Elevation and geographic features

Our main algorithm relies on estimating distance “as-the-crow-flies”, or a completely linear trajectory between the population pockets and school locations. This approach has three key advantages. First, it is a simple and straightforward measurement choice that allows for easy conceptualization of the way in which distance was measured and minimizes the number of contextually-dependent assumptions made about travel patterns, infrastructure, etc. Second, it makes computation vastly faster than other approaches (like the extension we will discuss here). Third, it does not require additional data layers besides what we have described before: solely population data and school locations. Still, all of these advantages come at the expense of ignoring potential barriers like geographic features or lack of roads connecting two places in a fairly linear fashion. Therefore, we showcase an extension of our main algorithm where we consider elevation changes and compute the “path of least resistance” between a population pocket and a school. In practice, this might take different forms. If there is a very large mountain between a school and a population pocket, the path of least resistance is likely around the mountain. If instead there is a very small hill between these two areas, the path of least resistance might still be a straight line over the hill (depending on the elevation of the hill and its circumference), instead of going all the way around it.

After incorporating this extension to our algorithm, we compare the results to our main results using the as-the-crow-flies methodology for Guatemala in 2017. Figure 7 (Panel A) plots, for each population pocket, the estimated distance to school using the as-the-crow-flies methodology (x-axis) against the estimated distance to school consider the path of least resistance (y-axis). For visual clarity, we bin observations and scale color according to the sum of population in that bin. The vast majority of population indeed cluster close to the 45-degree line in red, meaning that for nearly all cases, the difference in distance between the two methodologies is small. In fact, Figure 7 (Panel B) below displays the distribution of the difference in estimated distances between the two methodologies. The vast majority of the observations fall below a 20% difference between the two methodologies. Therefore, in the case of Guatemala, accounting for elevation does not make much of a difference in the identification of where education deserts are, and may come at the expense of increased barriers to analysis (e.g., data requirements, computational costs). However, this extension might be particularly valuable for other hilly or rugged contexts like Rwanda. Importantly, the estimation of the path of least resistance can also accommodate further geographical barriers such as accounting for internal bodies of water or roadways are an attractive feature to consider, data availability and reliability, as well as computational complexity and costs, make such analysis largely infeasible for many contexts. Given our intention to provide a broadly applicable and easily accessible toolset in this paper, and the already expansive length of the current manuscript, we opt not to explore this style of analysis ourselves.

11 While roadways are an attractive feature to consider, data availability and reliability, as well as computational complexity and costs, make such analysis largely infeasible for many contexts. Given our intention to provide a broadly applicable and easily accessible toolset in this paper, and the already expansive length of the current manuscript, we opt not to explore this style of analysis ourselves.
12 We leverage the implementation offered by van Etten (2017) in the R package “gdistance.” Put simply, this implementation minimizes travel time after accounting for the fact that speed is inversely related to the steepness of the gradient you climb (per Tobler’s Hiking Function; Tobler, 1993). Any sufficiently steep gradient is considered impassable and avoided for any routing.
13 Note that in all cases, the distance for the algorithm that takes into account elevation is equal or larger than for the main algorithm, since the main algorithm computes a straight line connecting two points.
impassable national parks. In this sense, this extension provides the most flexibility to further adapt our main algorithm to local conditions, at admittedly much longer computation times.

Figure 7 (Panel A): Comparison of “as-the-crow-flies” distances with distances calculated using the “path of least resistance” through elevation changes

Figure 7 (Panel B): Histogram displaying the distribution in the difference between “as-the-crow-flies” distances with distances calculated using the “path of least resistance” through elevation changes

Note: Sample subsets to only public primary schools in 2017 in Guatemala.

14 These could be incorporated in two ways. The first option would be to clip “holes” in the population and elevation raster data files using layers that signal where the national park or water bodies are. The second option would be to change the elevation of these impassable areas to an unrealistically high number. This way, the algorithm will never consider these as viable routes while searching for the path of least resistance.

15 Conducting this analysis for Guatemala took our workstation computer approximately 9 hours, compared with only 30 minutes for the main analysis. Moreover, we expect the computational time of this extension to increase exponentially with country area.
7. Discussion

In this paper, we propose an algorithm to identify populated areas that are not served by public primary schools in developing countries, where surveying costs may be prohibitively high and other types of administrative data may be lacking. We use Guatemalan data as a proof-of-concept to identify geographic areas within the country where individuals lack physical access to primary schooling, as well as to showcase some of the useful extensions we propose to our main methodology. We find that education deserts, defined as pockets of population outside of a school’s catchment area, are somewhat rare in Guatemala, and that a relatively few but strategically placed schools could significantly universalize physical access to education. Importantly, most of the data required to replicate this analysis in other countries is publicly available or is of easy access to researchers and policymakers. We also create and make available highly documented and portable code as a public good for others to recreate and extend our analysis to other contexts.

This type of disaggregated, fine-grain analyses can be especially valuable as policymakers and investors around the world attempt to guarantee universal access to education. If indeed a country has pockets of population in remote areas where there are no schools, and information is not readily available on where new schools could be more impactful, then it is not clear how to make these investments in a way that they create as much social welfare as possible. Unfortunately, the regions where it is most important to identify education deserts are often the same regions where traditional, aggregate administrative data is typically most lacking. By strategically locating educational institutions, policymakers can indeed ensure that all populations are served by such reforms, at least in terms of physical access to a school.

Finally, the value of the methodology could be used and extended to evaluate access to other educational resources, such as higher education institutions and libraries, or other public goods that are spatially located, such as healthcare and vaccination facilities, or water wells. Indeed, we expect that the broad availability of the data will facilitate a deeper investment in geographic analyses of this kind across all policy contexts, and we hope our study offers a glimpse of how that work could usefully proceed.
8. References

WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00670
Notes: the median and mean distance from a public primary school in Tanzania is 2.2 km and 5.9 km, respectively. The share of the population living further than 3 km from a public primary school is 40.6%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data only consists of schools in the mainland, not in Zanzibar. The school data was hosted under the OpenData Tanzania website (opendata.go.tz). The school data was updated as of 2016.
Peru

Notes: the median and mean distance from a public primary school in Peru is 0.6 km and 1.4 km, respectively. The share of the population living further than 3 km from a public primary school is 11.5%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data was downloaded from the SIGMED site, a dependency of the Ministry of Education. The school data was updated as of 2020.
Notes: the median and mean distance from a public primary school in Costa Rica is 0.5 km and 0.6 km, respectively. The share of the population living further than 3 km from a public primary school is 3.0%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data was provided by the Costa Rican Ministry of Public Education, also available for visualization here. The school data was updated as of 2020.
Notes: the median and mean distance from a public primary school in Kenya is 0.8 km and 2.0 km, respectively. The share of the population living further than 3 km from a public primary school is 12.9%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data was downloaded from the Kenya Open Data Initiative (KODI) website. The school data was updated as of 2018.
Notes: the median and mean distance from a public primary school in Rwanda is 1.4 km and 1.7 km, respectively. The share of the population living further than 3 km from a public primary school is 11.9%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data was downloaded from The National Institute of Statistics of Rwanda (NISR). The school data was updated as of 2012.
Notes: the median and mean distance from a public primary school in South Africa is 0.7 km and 1.1 km, respectively. The share of the population living further than 3 km from a public primary school is 5.1%. For the purposes of the left panels, distances above 10 km are coded as 10 km. The school data was downloaded from the Department of Basic Education of South Africa site. The school data was updated as of the fourth quarter of 2019 (published on March, 2020).